Квантование поля. Операторы рождения и уничтожения квантов

Квантование означает переход от полей к операторам, действующим на вектор (амплитуду) состояния Φ. По аналогии с обычной квантовой механикой вектор состояния полностью характеризует физическое состояние системы квантованных волновых полей. Вектор состояния - это вектор в некотором линейном пространстве.

Основной постулат квантования волновых полей заключается в том, что операторы динамических переменных выражаются через операторы полей таким же образом, что и для классических полей (с учетом порядка перемножения)

Для квантового гармонического осциллятора получена известная формула квантования энергии . Собственные функции, соответствующие указанным собственным значениям гамильтониана, оказываются связанными друг с другом некоторыми операторами - повышающий оператор, - понижающий оператор. Следует отметить, что эти операторы некоммутативны (их коммутатор равен единице).

Применение повышающего или понижающего оператора увеличивает квантовое число n на единицу и приводит к одинаковому увеличению энергии осциллятора (эквидистантность спектра), что можно интерпретировать как рождение нового или уничтожение кванта поля с энергией.

Именно такая интерпретация позволяет использовать вышеприведенные операторы, как операторы рождения и уничтожения квантов данного поля. Гамильтониан гармонического осциллятора выражается через указанные операторы следующим образом , где - оператор числа квантов поля. Как нетрудно показать - , то есть собственные значения этого оператора - число квантов. Любое n-частичное состояние поля может быть получено действием операторов рождения на вакуум

Для вакуумного состояния результат применения оператора уничтожения равен нулю (это можно принять за формальное определение вакуумного состояния).

В случае N осцилляторов гамильтониан системы равен сумме гамильтонианов индивидуальных осцилляторов. Для каждого такого осциллятора можно определить свои операторы рождения . Следовательно произвольное квантовое состояние такой системы может быть описано с помощью чисел заполнения - количества операторов данного сорта k, действующих на вакуум:

Такое представление называют представлением чисел заполнения. Суть данного представления заключается в том, чтобы вместо задания функции функции от координат (координатное представление) или как функцию от импульсов (импульсное представление), состояние системы характеризуется номером возбужденного состояния - числом заполнения.

Можно показать, что, например, скалярное поле Клейна-Гордона может быть представлено как совокупность осцилляторов. Разлагая полевую функцию в бесконечный ряд Фурье по трехмерному вектору импульса можно показать, что из уравнения Клейна-Гордона следует, что амплитуды разложения удовлетворяют классическому дифференциальному уравнению второго порядка для осциллятора с параметром (частотой) . Рассмотрим ограниченный куб и наложим условие периодичности по каждой координате с периодом.